
Software Process and
Project Management

Assoc. Prof. Waraporn Jirapanthong, Ph.D.



Topics

Software Process Model

Software Process

Software Project Management

Lecture 2
WE561 2



Software Process Model

WE561 3



A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

Lecture 2
WE561 4



Why Process Models?

Provide guidance for a systematic 
coordination and controlling of the tasks and 
of the personnel who performs the tasks

Note the key words: coordination, tasks, 
people 

Lecture 2
WE561 8



Process Model 

Defines the set of tasks that need to be performed

Defines the input and the output from these tasks

Defines the pre-condition and post-conditions for each task

Defines the sequence of flow of the tasks

May include a description who performs it

Lecture 2
WE561 9



A Simple and Familiar Process 

Code Compile

Debug

Problem

Statement
Release

problem problem

Unit Test

1. Most people performs and follow this process, but unfortunately some skips

unit testing or debugging

2. Also, some proceeds without clearly understanding the “problem statement” -

--- which is requirement

Lecture 2
WE561 11



Some “Traditional” Software Development Processes

• The “simple” process was employed by many for years without 
formally embracing other important development activities 
such as requirements analysis, design, formal testing, or 
packaging.

• The recognition of the need for formal processes was initially 
driven by failures in developing large complex software
• Waterfall : earliest process and coping with no process

• Incremental : coping with decomposing the large systems

• Spiral : coping with risk management

• Rational Unified Process : coping with multiple development and management 
issues

12 Lecture 2
WE561 12



Waterfall Model

Requirements

Design

Code

Test

Integrate and

Package

1. Requirements must be specified in the

first step

2. Four main tasks must be completed in 

sequence: requirements, design, code,

and test, followed by packaging

3. Out put of one stage feeds into the next

stage in sequence, and thus easily

tracked by management

Lecture 2
WE561 13



Incremental Model  A – Continuous Integration

Req. 1 Req.2 Req. n

Des. Des. Des.

code

Integration Bucket

Test

code code

TestTest

. . .

. . . .  

. . . . . . 

System

Test

- Each major requirement/item

is developed separately through

the same sequence of : requirement,

design, code, and unit test

- As the developed pieces are completed,

they are continuously merged and

integrated into a common bucket for

integrated system test 

Lecture 2
WE561 14



Incremental Model B - Multiple Release 

Requirements Design Code Test Package Rel. 1

Requirements Design Code Test Package Rel. n

.

.

.

Each small set of requirements is developed, 

packages, and released in a multiple release

Fashion

Lecture 2
WE561 15



Spiral Model

Plan Next Phase

Develop, Verify

Next-level Product

Determine Objectives,

Alternatives, Constraints
Evaluate Alternatives,

Identify, Resolve Risks

req.

Spec.

design

model

design

validationtest plan

code

unit

test

dev plan

req. plan

risk

analysis

proto

type

design

sys.

test

“Review”

- Software development

activities are cycled through

4 phases

- A Risk averse process
Lecture 2

WE561 16



Problems with Traditional Processes

Lengthy development 
time

Inability to cope with 
changes in 
requirements

Assumes requirements 
are understood at 
beginning of project

Relies on heroic 
development effort

Complex methodology
Waste/duplication of 
effort

Lecture 2
WE561 17



Software Process in Modern Software Development:
Introduction to Agile

Agile vs. Waterfall: A Tale of Two Teams

Lecture 2
WE561 18

http://www.youtube.com/watch?v=PHS-ycbRwqI
http://www.youtube.com/watch?v=PHS-ycbRwqI


The key characteristics of Agile Process

Family of software development methodologies

Short releases and iterations

Incremental design

User involvement

Minimal documentation

Informal communications

Change

Lecture 2
WE561 19



The Manifesto for Agile Software Development

• Individuals and interactions over processes and tools 

• Working software over comprehensive documentation 

• Customer collaboration over contract negotiation 

• Responding to change over following a plan

“We are uncovering better ways of developing 
software by doing it and helping others do it.  
Through this work we have come to value: 

That is, while there is value in the items on the right, 
we value the items on the left more.”

Kent Beck et alhttp://agilemanifesto.org

Lecture 220 WE561 20



Some Agile Methodologies

Agile 
Methodology

Extreme 
Programming 

(XP)

Crystal 
Clear/Orange

RUP !
Microsoft 
Solutions 

Framework

SCRUM

Lecture 2
WE561 21



• Originally proposed by Schwaber and Beedle
• Scrum—distinguishing features

• Development work is partitioned into “packets”
• Testing and documentation are on-going as the product is 

constructed
• Work occurs in “sprints” and is derived from a “backlog” of existing 

requirements
• Meetings are very short and sometimes conducted without chairs
• “demos” are delivered to the customer with the time-box allocated

Lecture 222

Scrum

WE561 22



Lecture 223

Scrum (cont.)

WE561 23

http://www.youtube.com/watch?&v=XU0llRltyFM
http://www.youtube.com/watch?&v=XU0llRltyFM


Extreme Programming (XP)

Source: http://www.extremeprogramming.org/

Lecture 2

Rapid feedback
Simplicity
Incremental change
Embrace change
Quality work

WE561 24

http://www.extremeprogramming.org/map/iteration.html
http://www.extremeprogramming.org/map/iteration.html


Agile vs. Traditional

Agile Traditional / Heavy

Requirements • Assumes change

• Informal requirements

• Constant user interaction

• Assumes no change

• Complete, detailed, formal 

requirements document 

Design • Informal 

• Iterative

• Formal 

• Upfront

User 

involvement

• Crucial 

• Frequent 

• Beginning (Requirements)

• End (Acceptance testing)

Documentation • Minimal, only as needed

• Source code

• heavy, formal documents

Communication • Informally

• Throughout the project

• Documents 

• Formal memos and 

meetings

Complexity • Low • High

Overhead • Low • High

Lecture 2
WE561 25



Lecture 226

Agility and the Cost of Change

WE561 26



Agile vs. Traditional

Advantages

Simpler

Low cost, overhead

Deals with changes

Fast results

Usable systems

Risks, Disadvantages

Not scalable

Relies on teamwork

Relies on access to customer

Cultural clash

Lecture 2
WE561 27



Software Process

WE561 28



Process Assessment

• How mature is your software engineering organization and 
do you need to improve?

• ISO (ISO 9000 series) and SEI (at Carnegie Mellon) are two 
leading organizations that help in the process assessment

No Process Matured Process
Where are you in 

this wide spectrum?

Lecture 2
WE561 29



SEI CMM & CMMI

• Software Engineering Institute (SEI) proposed a Capability 
Maturity Model (CMM) to help software organizations 
assess their maturity and provide guidance in software 
development

• In 2001, CMM was upgraded to CMMI (CMM Integrated). 
There are multiple major aspects to CMMI:
• Systems engineering

• Software engineering

• Integrated product 

and process development

• Supplier sourcing

Lecture 2

Initial

Repeatable

Defined

Managed

Optimizing

Level 1

Level 4

Level 

3

Level 2

Level 

5

Least Mature

Most Mature

WE561 30



Example of SPI: CMMI Level 1

Initial Level 1

Level 4

Level 3

Level 2

Level 5

Least Mature

Most Mature

Ad hoc and Chaotic

Lecture 2
WE561 31



Example of SPI: CMMI Level 2

Initial

Repeatable

Level 1

Level 4

Level 3

Level 2

Level 5

Least Mature

Most Mature
1) Requirements Management 
2) Project Planning 
3) Project Monitoring and Control 
4) Supplier Agreement and Management 
5) Measurement and Analysis 
6) Process and Product Quality Assurance
7) Configuration Management

Lecture 2
WE561 32



Example of SPI: CMMI Level 3

Initial

Repeatable

Defined

Level 1

Level 4

Level 3

Level 2

Level 5

Least Mature

Most Mature

Lecture 2

1) Requirements Development
2) Technical Solution
3) Product Integration
4) Verification
5) Validation
6) Organizational Focus
… and more… (Level 3 has eleven process areas)

WE561 33



Example of SPI: CMMI Level 4

Initial

Repeatable

Defined

Managed

Level 1

Level 4

Level 3

Level 2

Level 5

Least Mature

Most Mature

Lecture 2

1) Organizational Process Performance
2) Quantitative Project Management

WE561 34



Example of SPI: CMMI Level 5

Initial

Repeatable

Defined

Managed

Optimizing

Level 1

Level 4

Level 3

Level 2

Level 5

Least Mature

Most Mature

Lecture 2

1) Organizational Performance Management
2) Causal Analysis and Resolution

Goal: Better Process -> Better Project Management -> Better Product

WE561 35



Software Project Management

WE561 36



Software Project Management

AN UMBRELLA ACTIVITY 
WITHIN SOFTWARE 

ENGINEERING

BEGINS BEFORE ANY TECHNICAL 
ACTIVITY AND CONTINUE 

THROUGHOUT SOFTWARE 
DEVELOPMENT PROCESS

37 Lecture 2
WE561 37



The Management Spectrum (Four P’s)

People
 RolesProblem

 Objectives

 Scope

 Alternatives

 Technical and management constraints

Process
 Tasks

 Milestones

 Deliverables

 QAProject

38 Lecture 2
WE561 38



Project Management Process

• Why do we need project management?

• Why can’t we just follow one of the software development process and 
be left alone?

All projects – small and large – need project management

because all projects need some degree of

- planning

- organizing

- status monitoring

- adjustment 

39 Lecture 2
WE561 39



Software Project Management (POMA) Process

Project 

Planning

Project 

Organizing

Project 

Monitoring

Project 

Adjusting

This process looks 

sequential at the macro

level, but may be very

iterative at the micro

level

40 Lecture 2
WE561 40



Planning (POMA)

41 Lecture 2

The 1st step of project planning is to 
understand the requirements of the project. 
This step itself may be a mini-project

WE561 41



Planning (POMA) (cont.)

Then the following 4 steps are included in the rest of project planning

42 Lecture 2

Estimate
• the work effort,

• the schedule, and

• the needed resources

Clearly define and 
establish 

measurable goals 
for the project

Determine the 
project resource 

allocations of 

• people, 

• process, 

• tools, and 

• facilities

Identify and 
analyze the project 

risks

WE561 42



Organizing (POMA)

Once a project plan is formulated or partially formulated, organizing may 
start

Organization structure needs to be designed

Human resource hiring needs to start and be completed along with 
acquisition of other resources

Any required education and training have to be completed

Mechanisms for tracking must be established

• Risk tracking and mitigation

• Project goal monitoring

43 Lecture 2
WE561 43



Monitoring (POMA)

Once the project is 
organized and set 
into motion, there 
still needs to be 
regular tracking to 
ensure that it is 
headed in the right 
direction. (Projects 
can not be left to 
coast along by itself.)

44 Lecture 2

3 main 
components 

of project 
monitoring

Project status 
information 
collection

Analysis and 
evaluation of 

collected 
information

Presentation 
and 

communicati
on of the 

project status

WE561 44



Adjusting (POMA)

It is highly unlikely 
that a software 
project progresses 
with no problem. As 
soon as the project 
status suggests 
potential problem, 
we must not be 
afraid to make 
changes.

45 Lecture 2

3 main areas of 
adjustments are 
(or combinations 

of)

Resources

Schedule
Project 
content

WE561 45



Project Management Framework

Stakeholders’ 
needs and 

expectations

Project
Success

Project Management Integration

Scope
Mgt

Time
Mgt

Cost
Mgt

Quality
Mgt

HR
Mgt

Comm.
Mgt

Risk
Mgt

Procure.
Mgt

Core Functions

Facilitating Functions

9 Knowledge Areas Tools 
and

techniques

PMBOK, 1996

46 Lecture 2
WE561 46



Software Project Management Process 

is not the same as

- Software Development Process or

- Software Life Cycle

50 Lecture 2
WE561 50



Start Planning Your Project…

• Know your project goal, scope and deliverables

• Example of technique: Work Breakdown Structure 

WE561 51



Then…

Use WBS to
• Examine and determine the external deliverables of the project

• Identify the steps and tasks required to produce each of the deliverables, 
including the tasks that are required to produce any intermediate internal 
deliverables

• Sequence the tasks, showing any potential for parallelism

• Provide an estimate to complete each of the tasks

• Provide an estimate of the productivity of the personnel that is most likely to 
be assigned to each of the tasks

• Calculate the time required to accomplish each task

• For each of the external deliverable, lay out the timeline of all the tasks 
needed to produce that deliverable and label the resources that will be 
assigned to the tasks

52 Lecture 2
WE561 52



Sample Technique for Time and Resource Planning (1)

Task 1

12

Task 2

2

Task-3a

6

Task-3b

6

Task-3c

6

Task-4a

2

Task-4c

2

Task-4b

2

Task-5a

1

Task-5c

1

Task-5b

1
End

The Program 

Evaluation and 
Review Technique

(PERT)

53 Lecture 2
WE561 53



End Result of WBS = Initial Schedule Estimate

Tasks Person
Time

1 12 units

2

3a

3b

3c

4a

4b

4c

5a

5b

5c

2 

6 

6 

6 

2 

1 

1 

1 

2 

2 

X,Y,Z

X,Y,Z

X

Y

Z

X

Y

Z

X

Y

Z

54 Lecture 2
WE561 54



Gantt Chart for Project X

55 Lecture 2
WE561 55



Goals of Software Project Management

End results of the project satisfy the customer’s needs

All the desired and the needed product / project attributes 
(quality, security, productivity, cost, etc.) are met

Target milestones and the overall schedule are met

Team members are operating effectively and at a high level 
of morale

Required tools and other resources are made available and 
are effectively utilized

56 Lecture 2
WE561 56



Summary

Software process describes approaches to a variety of tasks 
or activities that take place to development software while 
project management process is a set of tasks or activities 
that take place to manage the development

Software project management process requires different set 
of skills from software development process

Failure in project management cause more problems than 
failure in the technology

57 Lecture 2
WE561 57



Classwork

• Create product plan for your term project

• Schedule your plan by using MS Project/ any tools

WE561 58


